| 1 |  | mark | comment | sub |
| :---: | :---: | :---: | :---: | :---: |
| (i) | Continuous string: smooth ring: light string | $\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$ | One reason <br> Another reason | 2 |
| (ii) | Resolve $\leftarrow: ~ 60 \cos \alpha-60 \cos \beta=0$ <br> (so $\cos \alpha=\cos \beta$ ) and so $\alpha=\beta$ | M1 | [(ii) and (iii) may be argued using Lami or triangle of forces] <br> Resolution and an equation or equivalent. Accept $s \leftrightarrow c$. Accept a correct equation seen without method stated. <br> Accept the use of ' $T$ ' instead of ' 60 '. <br> Shown. Must have stated method (allow $\rightarrow$ seen). | 2 |
| (iii) | Resolve $\uparrow$ $2 \times 60 \times \sin \alpha-8 g=0$ <br> so $\alpha=40.7933 \ldots$ so $40.8^{\circ}(3 \mathrm{~s} . \mathrm{f}$. | M1 <br> B1 <br> B1 <br> A1 <br> A1 | Resolution and an equation. Accept $s \leftrightarrow c$. Do not award for resolution that cannot give solution (e.g. horizontal) <br> Both strings used (accept use of half weight), seen in an equation <br> $\sin \alpha$ or equivalent seen in an equation <br> All correct | 5 |
| (iv) | Resolve $\rightarrow$ $10+T_{\mathrm{QC}} \cos 25-T_{\mathrm{PC}} \cos 45=0$ <br> Resolve $\uparrow T_{\mathrm{PC}} \sin 45+T_{\mathrm{QC}} \sin 25-8 g=0$ <br> Solving $\begin{aligned} & T_{\mathrm{CQ}}=51.4701 \ldots \text { so } 51.5 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .) \\ & T_{\mathrm{CP}}=80.1120 \ldots \text { so } 80.1 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$ | M1 <br> M1 <br> A1 <br> M1 <br> A1 <br> A1 <br> F1 | Recognise strings have different tensions. <br> Resolution and an equation. Accept $s \leftrightarrow c$. No extra forces. <br> All forces present. Allow sign errors. <br> Correct. Any form. <br> Resolution and an equation. Accept $s \leftrightarrow c$. No extra forces. <br> All forces present. Allow sign errors. <br> Correct. Any form. <br> * method that leads to at least one solution of a pair of simultaneous equations. <br> cao either tension <br> other tension. Allow FT only if M1* awarded [Scale drawing: $1^{\text {st }}$ M1 then A1, A1 for answers correct <br> to 2 s.f.] | 8 |
|  |  | 17 |  |  |

PhysicsAndMathsTutor.com

| 2 | (i) | $\begin{aligned} & v^{2}-u^{2}=2 a s \\ & 0^{2}-40^{2}=2 \times a \times 125 \\ & \Rightarrow a=-6.4 \\ & F=m a \\ & F=800 \times(-) 6.4=(-) 5120 \end{aligned}$ | M1 <br> A1 <br> M1 <br> E1 <br> [4] | Substitution required. For $u v$ interchange award up to M1 A0 Condone no - sign <br> Allow +5120 or -5120 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} & v=u+a t \\ & 0=40-6.4 \times t \\ & t=6.25 \quad \text { It takes } 6.25 \text { seconds to stop } \end{aligned}$ | M1 <br> A1 <br> [2] | FT for $a$ |  |
|  |  | Alternative $\begin{aligned} & s=\frac{1}{2}(u+v) t \\ & 125=\frac{1}{2}(40+0) \times t \end{aligned}$ <br> $t=6.25$ it takes 6.25 seconds to stop | (M1) <br> (A1) <br> [2] |  |  |
|  |  | Alternative $\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \\ & 125=40 t+\frac{1}{2} \times(-6.4) t^{2} \\ & 3.2 t^{2}-40 t+125=0 \\ & t=6.25 \end{aligned}$ | (M1) <br> (A1) <br> ([2]) |  |  |


| (iii) |  | Reaction distance $<155-125=30 \mathrm{~m}$ <br> Time taken to travel 30 m at $40 \mathrm{~m} \mathrm{~s}^{-1}$ is <br> 0.75 s | E1 | 30 must be seen and used |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (iv) | Distance travelled before braking <br> $=20 \times 0.675=13.5 \mathrm{~m}$ <br> Distance travelled while braking <br> $=\frac{20^{2}}{2 \times 6.4}=31.25$ <br> Stopping distance $=13.5+31.25=44.75 \mathrm{~m}$ | B1 | Cao | B1 |  |
| [3] |  |  |  |  |  |


| (v) | The distance travelled during the reaction time is not affected by the slope. It is $20 \times 0.675=13.5 \mathrm{~m}$ <br> Component of the car's weight down the slope $=m g \sin \alpha=800 \times 9.8 \times \sin 5^{\circ}(=683.3 \mathrm{~N})$ <br> Force opposing motion when the brakes are applied $=5120-683.3=4436.9$ $\text { Acceleration }=(-) \frac{4436.7}{800}=(-) 5.546 \mathrm{~ms}^{-2}$ <br> Distance travelled while braking $=-\frac{u^{2}}{2 a}=-\frac{400}{2 \times(-) 5.546}=36.06 \mathrm{~m}$ <br> Stopping distance $=13.5+36.06=49.56 \mathrm{~m}$ | M1 <br> A1 <br> M1 <br> A1 <br> A1 <br> F1 <br> [6] | 13.5 is rewarded later <br> Allow cos for $\sin$ for M1 Allow omission of $g$ for this mark only <br> Cao <br> The resistance (5120) and their weight component (683.3) must have opposite signs. <br> Allow FT for 36.06 from previous answer. Allow FT of 13.5 from part (iv) |
| :---: | :---: | :---: | :---: |
| (vi) | Increase in stopping distance on account of slope $=49.56-44.75=4.81 \mathrm{~m}$ <br> Percentage increase $=\frac{4.81}{44.75} \times 100=11 \%$ | B1 <br> [1] | Cao This mark is dependent on a correct final answer to part (v) |


| 3 |  | mark | notes |
| :---: | :---: | :---: | :---: |
| (i) | 25 N | $\text { B1 } \begin{aligned} & \\ & \\ & \\ & \hline \end{aligned}$ | Condone no units. Do not accept -25 N. |
| (ii) | $\begin{aligned} & 50 \cos 25 \\ & =45.31538 \ldots \text { so } 45.3 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$ | M1 <br> A1 <br> 2 | Attempt to resolve 50 N . Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. No extra forces. cao but accept - 45.3. |
| (iii) | Resolving vertically $\begin{aligned} & R+50 \sin 25-8 \times 9.8=0 \\ & R=57.26908 \ldots \text { so } 57.3 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$ | M1 <br> A1 <br> A1 <br> 3 | All relevant forces with resolution of 50 N . No extras. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. All correct. |
| (iv) | Newton's $2^{\text {nd }}$ Law in direction DC $\begin{aligned} & 50 \cos 25-20=18 a \\ & a=1.4064105 \ldots \text { so } 1.41 \mathrm{~m} \mathrm{~s}^{-2}(3 \text { s. f. }) \end{aligned}$ | $\begin{array}{ll} \text { M1 } \\ & \\ \text { A1 } & \\ \text { A1 } & \\ & 3 \\ \hline \end{array}$ | Newton's 2nd Law with $m=18$. Accept $F=m g a$. Attempt at resolving 50 N . Allow 20 N omitted and $\mathrm{s} \leftrightarrow \mathrm{c}$. No extra forces. <br> Allow only sign error and $s \leftrightarrow c$. <br> cao |
| Q8 <br> (v) | continued <br> Resolution of weight down the slope | B1 | $m g \sin 5^{\circ}$ where $m=8$ or 10 or 18 , wherever first seen |
|  | either <br> Newton's $2^{\text {nd }}$ Law down slope overall $18 \times 9.8 \times \sin 5-20=18 a$ $a=-0.2569 \ldots$ <br> Newton's $2^{\text {nd }}$ Law down slope. Force in rod can be taken as tension or thrust. Taking it as tension $T$ gives <br> For D: $10 \times 9.8 \times \sin 5-15-T=10 a$ <br> (For C: $8 \times 9.8 \times \sin 5-5+T=8 a$ ) $T=-3.888 \ldots=-3.89 \mathrm{~N} \text { (3 s. f.) }$ <br> The force is a thrust | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { F1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | $F=m a$. Must have 20 N and $m=18$. Allow weight not resolved and use of mass. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$ and sign errors (including inconsistency between the 15 N and the 5 N ). <br> cao <br> $F=m a$. Must consider the motion of either C or D and include: component of weight, resistance and $T$. No extra forces. Condone sign errors and $s \leftrightarrow c$. Do not condone inconsistent value of mass. <br> FT only applies to $a$, and only if direction is consistent. ' $+T$ ' if $T$ taken as a thrust <br> ' $-T$ ' if $T$ taken as a thrust <br> If $T$ taken as thrust, then $T=+3.89$. <br> Dependent on $T$ correct |


| or <br> Newton's $2^{\text {nd }}$ Law down slope. Force in rod can be taken as tension or thrust. Taking it as tension $T$ gives <br> For C: $8 \times 9.8 \times \sin 5-5+T=8 a$ <br> For D: $10 \times 9.8 \times \sin 5-15-T=10 a$ $a=-0.2569 \ldots T=-3.888 \ldots=-3.89 \mathrm{~N} \text { (3s.f.) }$ <br> The force is a thrust | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { F1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ | $F=m a$. Must consider the motion of C and include: component of weight, resistance and $T$. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. <br> $F=m a$. Must consider the motion of D and include: component of weight, resistance and $T$. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. <br> Award for either the equation for C or the equation for D correct. ' $-T$ ' if $T$ taken as a thrust ' $+T$ ' if $T$ taken as a thrust <br> First of $a$ and $T$ found is correct. If $T$ taken as thrust, then $T=+3.89$. <br> The second of $a$ and $T$ found is FT <br> Dependent on $T$ correct |
| :---: | :---: | :---: |
| then <br> After 2 s: $v=3+2 \times a$ $v=2.4860303$.. so $2.49 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s. f.) | M1 F1 $9$ | Allow sign of $a$ not followed. FT their value of $a$. Allow change to correct sign of $a$ at this stage. FT from magnitude of their $a$ but must be consistent with its direction. |
|  | 18 |  |

